Industrial microbiology

pp. 166-173, 1032-1038, 1039-1045,1046-1050

Ed van Niel Ed.van_Niel@tmb.lth.se

We are here

- Industrial microbiology → biotechnology
- Why the increased interest
- Microbiological versus chemical processes
- Type of 'fermentation' processes
- The fermentation itself
- Microbial growth & product formation
- Metabolic engineering

We are here

- Industrial microbiology \rightarrow biotechnology
- Why the increased interest
- Microbiological versus chemical processes
- Type of 'fermentation' processes
- The fermentation itself
- Microbial growth & product formation
- Metabolic engineering

Petroleum-based to Bio-based chemicals to....

....*reduce* global warming!

transportation

district heating

electricity

Secondly:

The Franco-German relationship The PAGE 31 Iran's last chance Economist PAGE 12 Russia's western borders PAGES 21-21 A SURVEY OF CORPORATE LEADERSHIP OCTOBER 257H-8157 2003 The end of the **Oil Age**

Search for alternatives

- -Sustainable (ecological balance)
- -Renewable (regenerate the sources)

Biomass as carbon & energy source

- Organic wastes (agriculture, domestic, industry)
- Energy crops (but: fertilization)
- Forest
- Algae & waterplants

Lignocellulosic biomass: - Majority of biomass - No competition with food or feed

Biomass value-pyramid

Selling prices versus Concentration

Biomass conversion technologies

For fermentations...

Sugar/starch

Glucose/Maltose/Sucrose

<u>must</u> be replaced by

Lignocellulose

Glucose/Mannose/Galactose Xylose/Arabinose

Lignocellulose composition

			"Sugars"	(hemi)cellulose	lignin	(%)
•	Brazil:	sugarcane	47	34	9	
	US: corn Sweden: wood		25	65	7	
•		WOOd	0	69	28	

Raw material	Xylan (Xylose) (%)	Arabinan (Arabinose) (%)	
Birch	19	-	
Spruce	6	1	
Wheat bran	19	15	
Corn stover	19	3	
Corn cob hulls	20	14	
Grass	16	5	

Hayn et al. (1993) In: Bioconversion of forest and agricultural plant residues. pp 33-72.

Biorefinery Concept

LU Biofuels concept

http://www.lth.se/lu_biofuels/

http://www.lth.se/fileadmin/energiportalen/Energy_Portal/Files/Bioenergy_School_ Book__hyperlinks_version_.pdf

Biorefinery in practice:

Depends on: -What biomass source -Where is it growing (location)

Net energy = Energy(out) - Energy(in)

But little bit of microbiology sofar...

We are here

- Industrial microbiology \rightarrow biotechnology
- Why the increased interest
- Microbiological versus chemical processes
- Type of 'fermentation' processes
- The fermentation itself
- Microbial growth & product formation
- Metabolic engineering

Biotechnology in process industry

Biotechnological processes

- Renewable raw materials
- Specific reactions
- ≻"Neutral" pH
- ➤ "Low" temperatures
- "Low" ion strength (osmolarity)
- No toxic solvents

HUGE quantities of H₂O (dilute streams)

Type of (micro-)organisms & products

Cells ➢ Bacteria > Yeasts **Filamentous** fungi Plant cells Mammalian cells Insect cells

Products

Amino acids Organic acids Nucleotides Vitamins Polysaccharides Antibiotics Insulin & other hormones Biosurfactants Enzymes

Platform chemicals (for chemical industry):

Succinate 1,3-Propanediol Itaconic acid

Fuels (EtOH, butanol, CH₄, H₂)

Type of 'fermentation' processes

- **Biotransformation** (Chemical industry)
- Biomass & enzyme production
- Food fermentations (e.g. Beer/Vinegar/Dairy)
- Fine chemicals (e.g. Pharmacy)
- Bulk chemicals (e.g. Lactic acid/Ethanol)

Example of a biotransformation

Figure 41.20 Biotransformation to Modify a Steroid. Hydroxylation of progesterone in the 11α position by *Rhizopus nigricans*. The steroid is dissolved in acetone before addition to the pregrown fungal culture.

Stereo-specific - no toxic solvents - no by-products - 1 step

Microbial biomass production

Yeast

Quorn

How will you grow these organisms, if biomass is the product?

Example of enzyme application: Soap

三元複合酶配方,潔力驚人! Tri-enzyme formula for a Cleaner and Whiter wash

三元複合酶配方,迅速去除纖維內部的各類 污垢,令衣物更鮮艷!更潔白! 更柔軟!更順滑!

The combination of the three powerful enzymes help to effectively remove stubborn stains, thus keeping the clothes whiter, brighter, softer and smoother.

Vinegar: food "fermentation"

$C_2H_5OH + O_2 \rightarrow CH_3COOH + H_2O$

Acetobacter & Gluconobacter species

Frings Acetator: high productivity

Various definitions of "Fermentation"

- 1. Any process involving the mass culture of microorganisms (aerobic or anaerobic)
- 2. Any biological process that occurs in the absence of O_2
- 3. Food spoilage
- 4. The production of alcoholic beverages
- 5. Use of an organic substrate as the electron donor and acceptor
- 6. Use of an organic substrate as an electron donor,

and of the same partially degraded organic substrate as an electron acceptor

7. Growth dependent on substrate-level phosphorylation

Physiologist view on fermentation definition

For instance Lactococcus lactis:

Lactic acid production (Primary product)

Definitions 5 & 6 in previous slide

We are here

- Industrial microbiology \rightarrow biotechnology
- Why the increased interest
- Microbiological versus chemical processes
- Type of 'fermentation' processes
- The fermentation itself
- Microbial growth & product formation
- Metabolic engineering

Industrial fermentation media

Source	Raw Material
Carbon and energy	Molasses
	Whey
	Grains
	Agricultural wastes (corncobs)
Nitrogen	Corn-steep liquor
NA ATT	Soybean meal
and the state of the state	Stick liquor (slaughterhouse products)
	Ammonia and ammonium salts
	Nitrates
2 C	Distiller's solubles
Vitamins	Crude preparations of plant and animal products
Iron, trace salts	Crude inorganic chemicals
Buffers	Chalk or crude carbonates
	Fertilizer-grade phosphates
Antifoam agents	Higher alcohols
	Silicones
	Natural esters
	Lard and vegetable oils

Influences cost price of product!

What about Yeast Extract?

Conventional industrial bioreactor:

Continuous stirred tank reactor

(CSTR)

-Oxic & anoxic conditions -Nutrient additions -Sample taking -Fermentation monitoring

Other ways of 'fermentation'

- (a) Lift-tube fermenter Density difference of gas bubbles entrained in medium results in fluid circulation -Air in (b) Solid-state fermentation Growth of culture without presence of added free water Flow in -> (c) Fixed-bed reactor Fixed Microorganisms on surfaces support of support material; material flow can be up or down Flow out (d) Fluidized-bed reactor Flow out Microorganisms on surfaces of particles suspended Suspended in liquid or gas streamsupport particles upward flow Flow in -> (e) Dialysis culture unit Waste products diffuse Membrane away from the culture. Medium Culture Substrate may diffuse or buffer through membrane to the culture Medium in ->=
 - (f) Continuous culture unit (Chemostat) Medium in and excess medium and cells to waste

D

- May have lower operating costs
- Special growth conditions for maximized product formation

We are here

- Industrial microbiology \rightarrow biotechnology
- Why the increased interest
- Microbiological versus chemical processes
- Type of 'fermentation' processes
- The fermentation itself
- Microbial growth & product formation
- Metabolic engineering

Microbial growth curve in batch mode

What happens in each phase?

- Growth-limiting nutrient

$$\mu = \frac{\mu_{\max} [S]}{Ks + [S]}$$

Where,

Specific growth rate μ =

Maximum specific growth rate 12 max =

- Substrate concentration S =
- Ks Specific substrate removal = coefficient

Exponential growth or Logarithmic growth

 N_t = population at time t N_0 = initial population n = number of generations at time t

 $N_t = N_0 \cdot 2^n$

 $\log N_t = \log N_0 + n \cdot \log 2$ $n = (\log N_t - \log N_0) / \log 2$

k = n/t (number of generations per unit time) If t = 1 h; then k = number of generations/h

Figure 6.10 Exponential Microbial Growth. The data from table 6.1 for six generations of growth are plotted directly (\rightarrow) and in the logarithmic form (\rightarrow) . The growth curve is exponential as shown by the linearity of the log plot.

Growth rate determination - alternative

Continuous culture

Change = In + Accumulation - Out

 $dX/dt = 0 + \mu X - DX$

D= f/V = dilution rate (1/h)

Primary & Secondary metabolites

Primary metabolite: Produced during growth

Secondary metabolite: Produced after completion of growth Or after growth limitation

Depends on:

- Organism
- Desired product

Secondary metabolite production (Example 1)

100 Glucose .45 a/liter-hour-> feeding 90 Nitrogen - 18 mg/liter-hour feeding 80 Biomass (g/liter), carbohydrate, ammonia, penicillin (g/liter x 10⁻¹) Lactose 70 60 Penicillin 50 40 **Biomass** 30 20 10 Ammonia 0 20 40 60 80 100 120 0 140 Fermentation time (hours)

Figure 41.16 Penicillin Fermentation Involves Precise Control of Nutrients. The synthesis of penicillin begins when nitrogen from ammonia becomes limiting. After most of the lactose (a slowly catabolized disaccharide) has been degraded, glucose (a rapidly used monosaccharide) is added along with a low level of nitrogen. This stimulates maximum transformation of the carbon sources to penicillin. The scale factor is presented using the convention recommended by the ASM. That is, a number on the axis should be multiplied by 0.10 to obtain the true value.

Secondary metabolite: Glutamic acid (Example 2)

Growth: using glyoxylate bypass (Biosynthesis precursors)

After growth: production of glutamate

We are here

- Industrial microbiology \rightarrow biotechnology
- Why the increased interest
- Microbiological versus chemical processes
- Type of 'fermentation' processes
- The fermentation itself
- Microbial growth & product formation
- Metabolic engineering

Principle of Metabolic Engineering

Metabolic Engineering, KMB 040

Principle of genetic engineering

for use in vaccine production

- -Bring in foreign DNA material (heterologous gene expression)
- Overexpress own genes
- Knock out genes

Why is it not wise to use plasmids in the industrial process?

Table 41.7 Combinatorial Biology in Biotechnology: The Expression of Genes in Other Organisms to Improve Processes and Products

Property or Product Transferred	Microorganism Used	Combinatorial Process	
Ethanol production	Escherichia coli	Integration of pyruvate decarboxylase and alcohol dehydrogenase II from Zymomonas mobilis.	
1,3-Propanediol production	E. coli	Introduction of genes from the <i>Klebsiella pneumoniae dha</i> region into <i>E. col</i> makes possible anaerobic 1,3-propanediol production.	
Y MEN 방법 이렇게 잘 하는 것은 것 같은 것은 것을 하는 것을 수 있는 것을 하는 것을 수 있는 것을 다 가지 않는 것을 다 있는 것을 수 있다. 것을 것을 것을 것을 것을 수 있는 것을 수 있다. 것을		Production of 7-ADC and 7-ADCA [*] precursors by incorporation of the expandase gene of <i>Cephalosoporin acremonium</i> into <i>Penicillium</i> by transformation.	
Lactic acid production	Saccharomyces cerevisiae	A muscle bovine lactate dehydrogenase gene (LDH-A) expressed in S. cerevisiae.	
Xylitol production	S. cerevisiae	95% xylitol conversion from xylose was obtained by transforming the XYLI gene of <i>Pichia stipitis</i> encoding a xylose reductase into <i>S. cerevisiae</i> , making this organism an efficient organism for the production of xylitol, which serves as a sweetener in the food industry.	
Creatininase ^b E. coli Ex		Expression of the creatininase gene from <i>Pseudomonas putida</i> R565. Gene inserted in a plasmid vector.	
Pediocin ^c	S. cerevisiae	Expression of bacteriocin from <i>Pediococcus acidilactici</i> in <i>S. cerevisiae</i> to inhibit wine contaminants.	
Acetone and butanol production	Clostridium acetobutylicum	Introduction of a shuttle vector into C. acetobutylicum results in acetone and butanol formation.	

*7-ACA = 7-aminocephalosporanic acid; 7-ADCA = 7-aminodecacetoxycephalosporonic acid,

^bT.-Y. Tang: C.-J. Wen; and W.-H. Liu. 2000. Expression of the creatininase gene from Pseudonomas putida RS65 in Escherichia coli. J. Ind. Microbiol. Biotechnol. 24:2-6.

"H. Schoeman: M. A. Vivier; M. DuToit: L. M. Y. Dicks; and I. S. Pretorius. 1999. The development of bactericidal yeast strains by expressing the Pediococcus acidilactici pediocin gene (pedA) in Succharomyces cerevisiae. Yeast 15:647–656.

Adapted from S. Ostergaard: L. Olsson; and J. Nielson. 2000. Metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 64(1):34-50.

We should have stayed in the laboratory."

Mindmap

Extra info

Industrial microbiology >> biotechnology

What is **Biotechnology?**

White Biotechnology – Industrial Biotechnology

http://www.europabio.org/Industrial_biotech/

Red Biotechnology – Health Care Biotechnology

http://www.europabio.org/Healthcare/

Green Biotechnology – Agricultural Biotechnology http://www.europabio.org/green_biotech/index.htm