Taxonomy

You will learn:

- Why is taxonomy important
- Methods for identification of microorganisms
- Correlation between taxonomy & evolution

Taxon = group

nomy ≈ distribution

More info: Bergey's Manual:

http://link.springer.com/book/10.1007%2F0-387-28021-9

Taxa = groups

WHY TAXONOMY?

Classification

- Nomenclature
- Identification

- Arrangements in groups (taxa)
- Assigning names to taxa
- Determination of taxon to which an isolate belongs

(most practical part of taxonomy)

MAKING SENSE OF NATURE

		GROUP		PE	ERI	OD	OIC	TA	BL	Ê (DF	TH	EF		M	=N'	ГS		
Q		I IA I 1.0079			RELATIV	VE ATOMIC N	IASS (1)			Semimetal		etal	$\overline{\mathbb{N}}$	http	://www.ktf-	split.hr/peri	odni/en/		18 VIIIA 2 4.0026
PERIC	1= - ,	HYDROGEN	2 11A	GRO	UP IUPAC	G	ROUPCAS		ali metal aline earth m	etal	16 Chalco	ogens element		13 IIIA	14 IVA	15 VA	16 VIA	17 VIA	Helium
	2	5 6.941 Li	⁴ 9.0122 Be	ATOMIC S	YMBOL	- B		Tra	Insition metal: Lanthanide Actinide	s STANE	DARD STATE	gas : (25 °C; 101 k	(Pa)	5 10.811 B	6 12.011 C	7 14.007 N	8 15.999 O	9 18.998 F	Ne
	3	11 22.990 Na	12 24.305 Μσ		ELEN	MENT NAME	/ /	/ <u> </u>		Ga	- liquid	Te - synthet	ic	13 26.982	14 28.086	15 30.974 P	16 32.065	17 35.453	18 39.948
/	1	SODIUM 19 39.098	MAGNESIUM 20 40.078	3 IIIB 21 44.956	4 IVB 22 47.867	5 VB 23 50.942	6 VIB 24 51.996	7 VIIB 25 54.938	8 26 55.845	9 27 58.933	10 28 58.693	11 IB 29 63.546	12 IIB 30 65.39	ALUMINIUM 31 69.723	SILICON 32 72.64	PHOSPHORUS 33 74.922	SULPHUR 34 78.96	CHLORINE 35 79.904	ARGON 36 83.80
	1	K		Sc SCANDIUM	Ti	V	Сг		Fe IRON	CO		CU		GALLIUM	Germanium	AS	Se	BROMINE	KRYPTON
4	5	Rb	STECHTUM	Y	Zr	NOPHIM	42 95.94 Mo	TC TC	Ru	Rh	Pd	Ag	48 112.41 Cd	49 114.82 In	Sn 118.71	Sb anticont	Те	I	Xe
	5	55 132.91 Cs	56 137.33 Ba	57-71 La-Lu	72 178.49 Hf	73 180.95 Ta	74 183.84 W	75 186.21 Re	76 190.23 OS	77 192.22 Ir	78 195.08 Pt	79 196.97 Au	80 200.59	81 204.38	82 207.2 Pb	83 208.98 Bi	84 (209) Po	85 (210) At	86 (222) Rn
/	8	CAESIUM 87 (223)	BARIUM 88 (226)	Lanthanide 89-103	HAFNIUM 104 (261)	TANTALUM 105 (262)	TUNGSTEN 106 (266)	RHENIUM 107 (264)	OSMIUM 108 (277)	IRIDIUM 109 (268)	PLATINUM 110 (281)	GOLD 111 (272)	MERCURY 112 (285)	THALLIUM	LEAD 114 (289)	BISMUTH	POLONIUM	ASTATINE	RADON
		Francium	Ra	Ac-Lr Actinide	RIF		Sg seaborgium	BOHRIUM	HASSIUM	MIC					PIDUU				2n
(II)				Οι	Jes	tio	n 1	•		36	63 151.96	64 157.25	65 158.93	66 162.50	67 164.93	68 167.26	Copyright © 19 69 168.93	98-2003 EniG. (70 173.04	əni@ktf-split.hr) 71 174.97
		\ /ł		hid		σ		n tl	hor	I JM	EUROPIUM	Gd	TERBIUM	Dy Dysprosium	HOLMIUM	ERBIUM	TM	Y D YTTERBIUM	LU
						5 61				14)	95 (243) Am	96 (247) Cm	97 (247) Bk	98 (251) Cff	99 (252) ES	100 (257) Fm	101 (258) Md	102 (259) NO	103 (262)
			1 a	Sys	stel	M a		Wd	y:	UM	AMERICIUM	CURIUM	BERKELIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM

Founding father of taxonomy: Carl von Linné (1707 – 1778)

Born 1707 Stenbrohult, Småland 1727 Un of Lund (medicine) 1728 Un of Uppsala (bottany) 1731 Lapland excursion 1735 Un of Harderwijk (medical degree) 1735 Un of Leiden *Systema Naturae, 1st Edition* 1738 Sweden – Stockholm 1741 Professor at Un of Uppsala Died 1778

Some important developments

Classification

- Natural anatomical characteristics
- Phenetic phenotypic characteristics
- Genotypic genetic characteristics
- Phylogenetic evolutionary links

Polyphasic taxonomy

- Incorporates information from genetic, phenotypic and phylogenetic analysis
- Used for determining the genus* and species of a newly discovered (micro-)organism

*genus – well defined group of one or more species that is clearly separate from other genera

Classification: Hierarchical arrangement

Taxonomic ranks

↓ Domain				Ba	cteria			
Phylum				Protec	I obacteria I			anisin's position ir of its properties.
Class	α-Prote	obacteria	β-Proteobacte	ria γ-P	roteobacteria	δ-Proteobact	eria ε-Prot	eobacteria
Order	Chromatiales	Thiotricha	ales Legior	ellales Pse	eudomonadales	Vibrionales	Enterobacteria	les Pasteurellales
Family			the resolution of				Enterobacteriac	have been moase ors. However, the
Genus	Enterobacter	Escherichia	 Klebsiella	 Proteus	Salmonella	Serratia	Shigella Y	ersinia
Species	, discussed lat I taxonomic te	(RDP-III) _e A logenetic and	tasion'i seuda S.	boydii	S. dysenteriae	S. flexr	neri S.	sonnei
oibni ba	make it a god			features o	nomist contactor	ule the taxo	do little to g	and use all as a second s

Microbiologist use binomial system of Linné: genus & species

Living in the 1970s....

Without molecular techniques

Which techniques would you have used to classify a microorganism?

Which properties of the microorgansms were considered then?

Answer: several examples

Classical methods!

Morphology

Physiology

Biochemistry

Ecology

Table 19.10	Some Characteristic Differences betwe	een Gram-Negative and Gram-Positiv	ve Bacteria
Property	Gram-Negative Bacteria	Gram-Positive Bacteria	Mycoplasmas
Cell wall	Gram-negative type wall with inner 2–7 nm peptidoglycan layer and outer membrane (7–8 nm thick) of lipid, protein, and lipopolysaccharide. (There may be a third outermost layer of protein.)	Gram-positive type wall with a homogeneous, thick cell wall (20–80 nm) composed mainly of peptidoglycan. Other polysaccharides and teichoic acids may be present.	Lack a cell wall and peptidoglycan precursors; enclosed by a plasma membrane
Cell shape	Spheres, ovals, straight or curved rods, helices or filaments; some have sheaths or capsules.	Spheres, rods, or filaments; may show true branching	Pleomorphic in shape; may be filamentous, can form branches
Reproduction	Binary fission, sometimes budding	Binary fission, filamentous forms grow by tip extension	Budding, fragmentation, and/or binary fission
Metabolism	Phototrophic, chemolithoautotrophic, or chemoorganoheterotrophic	Usually chemoorganoheterotrophic, a few phototrophic	Chemoorganoheterotrophic; most require cholesterol and long-chain fatty acids for growth.
Motility	Motile or nonmotile. Flagella placement can be varied—polar, lophotrichous, peritrichous. Motility may also result from the use of axial filaments (spirochetes) or gliding motility.	Most often nonmotile; have peritrichous flagella when motile	Usually nonmotile
Appendages	Can produce several types of appendages—pili and fimbriae, prosthecae, stalks	Usually lack appendages (may have spores on hyphae)	Lack appendages
Endospores	Cannot form endospores	Some groups	Cannot form endospores

Outcome of Classical methods

Methods for identification **Molecular** Classical See previous slides **GC** content **DNA-DNA hybridization** Amino acid sequencing **16R rRNA sequencing Genomic fingerprinting**

Genome sequencing

Relative taxonomic resolution

Family	Genus	Species	Subspecies	Strain
	G	enome sequen	cing	
16S rDNA	sequencing			
		Mol% G+C		
	DN/	A-DNA hybridiz	ation	
		Multilo	ocus sequence	typing
		Whole	e cell protein pr	ofiling
		Ger	nomic fingerprin	ting

.....

GC Content (nucleic acid base composition)

Question 3: Why T_m Poly(AT) < T_m poly(GC)?

Principle DNA DNA hybridisation

Measure of sequence homology

- common procedure:
- Bind nonradioactive DNA to nitrocellulose filter
- Incubate filter with radioactive single-stranded DNA
- Measure amount of radioactive DNA attached to filter

Table 17.4	Comparison of <i>N</i> by DNA Hybridi	<i>Veisseria</i> Species zation Experiments				
Membrane-	Attached DNA ^a	Percent Homology ^b				
Neisseria me	eningitidis	100				
N. gonorrho	eae internet body at a	nerdicism add (A 78 les bou				
N. sicca	activity is most from	45				
N. flava	larity of the PMA se	dizatio 25 nd thus the 35 ottaxib				
a labortor or	A Marcal Station of the March 1998 State	Increase of the second s				

http://www.youtube.com/watch?v=76eKnmCtCTU

Principle of genomic fingerprinting

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Add Specific primers for Repetitive Nucleotide Sequences

Cluster analysis

PhD student improves police DNA analysis

29 April 2011

The police have begun using an improved method of DNA analysis, developed by Johannes Hedman, a doctoral student at Applied Microbiology. Together with the Swedish National Laboratory of Forensic Science, SKL, he has created a new enzyme combination that makes DNA profiles from crime scene samples clearer. This raises the chances of linking the perpetrator to the crime when there is little genetic material and the sample is dirty – which is often the case.

Statens kriminal tekniska laboratorium - SKL

Whole genome sequencing

urce: National Human Genome Research Institut

Pace (2009) Microbiol Mol Biol Rev 73:565-576

Sequencing 16S rRNA for prokaryotic phylogenetic tree

2D & 3D forms

16S rRNA fluctuates during equilibrium as simulated here

Question 4: how does the RNA form stems and loops?

16S rRNA & 18S rRNA

Bacterium

Archea

Eukaryote

Copyright @The McGraw-Hill Companies, inc. Permission required for reproduction or display.

Table 19.1 Comparison of	Bacteria, Archaea, and Eucarya	16 16		
Property	Bacteria	Archaea	Eucarya	
Membrane-Enclosed Nucleus with Nucleolus	Absent	Absent	Present	
Complex Internal Membranous Organelles	Absent	Absent	Present	
Cell Wall	Almost always have peptidoglycan containing muramic acid	Variety of types, no muramic acid	No muramic acid	
Membrane Lipid	Have ester-linked, straight- chained fatty acids	Have ether-linked, branched aliphatic chains	Have ester-linked, straight- chained fatty acids	
Gas Vesicles	Present	Present	Absent	
Transfer RNA	Thymine present in most tRNAs N-formylmethionine carried by	No thymine in T or T\u00f6C arm of tRNA	Thymine present	
	initiator tRNA	Methionine carried by initiator tRNA	Methionine carried by initiato tRNA	
Polycistronic mRNA	Present	Present	Absent	
mRNA Introns	Absent	Absent	Present	
mRNA Splicing, Capping, and Poly A Tailing	Absent	Absent	Present	
Ribosomes				
Size	70S	70S	80S (cytoplasmic ribosomes)	
Elongation factor 2 reaction with diphtheria toxin	Does not react	Reacts	Reacts	
Sensitivity to chloramphenicol and kanamycin	Sensitive	Insensitive	Insensitive	
Sensitivity to anisomycin	Insensitive	Sensitive	Sensitive	
DNA-Dependent RNA Polymera	ise	5000	and the second	
Number of enzymes	One	One	Three	
Structure	Simple subunit pattern (6 subunits)	Complex subunit pattern similar to eucaryotic enzymes (8–12 subunits)	Complex subunit pattern (12–14 subunits)	
Rifampicin sensitivity	Sensitive	Insensitive	Insensitive	
Polymerase II Type Promoters	Absent	Present	Present	
Metabolism				
Similar ATPase	No	Yes	Yes	
Methanogenesis	Absent	Present	Absent	
Nitrogen fixation	Present	Present	Absent	
Chlorophyll-based photosynthesis	Present	Absent	Present*	
Chemolithotrophy	Present	Present	Absent	

"Present in chloroplasts (of bacterial origins."

A favoured phylogenetic tree of the 3 Domains

Bacteria Acidobacteria Actinobacteria **3** Domains Cyanobacteria - chloroplast Chlorobi Firmicutes Proteobacteria TM7 Thermotogae of life - mitochondria Verrucomicrobia WS6 Gemmatimonadetes OP11 Bacteroidetes BRC1 Chloroflexi Choanon agellates Fungi Anines **Microbiologist point** Red Algae Origin of view 🙂 Plants Stramenopiles Crenarchaeota Alveolates Acanthamoebae Archaea Euglenozoa **Question 5:** Euryarchaeota What does the Hererolobosea - Trichomonads BOLZ biologist not like rRNA sequence change - Diplomonads BAQI in this picture? Unresolved branching order Eucarya

Pace (2009) Microbiol Mol Biol Rev 73:565-576

Suggested: Kingdoms of life

Biologists point of view

From prokaryotic endosymbionts to eukaryotes

Lynn Margulis 1970 endosymbiosis

Lateral gene transfer

Taxonomy mindmap

Table 19.6 Repres	entative G + C Con	tent of Microorganisms			
Organism	Percent G + C	Organism	$\mathbf{Percent}\mathbf{G} + \mathbf{C}$	Organism	Percent G + C
Bacteria	100 100 100	Rhodospirillum	62-66	Peridinium triquetrum	53
Actinomyces	59-73	Rickettsia	29-33	Physarum polycephalum	38-42
Anabaena	39-44	Salmonella	50-53	Plasmodium berghei	41
Bacillus	32-62	Spirillum	38	Scenedesmus	52-64
Bacteroides	28-61	Spirochaeta	51-65	Spirogyra	39
Bdellovibrio	49.5-51	Staphylococcus	30-38	Stentor polymorphus	45
Caulobacter	62-65	Streptococcus	33-44	Tetrahymena	19-33
Chlamydia	41-44	Streptomyces	69-73	Trichomonas	29-34
Chlorobium	49-58	Sulfolobus	31-37	Trypanosoma	45-59
Chromatium	48-70	Thermoplasma	46	Volvox carteri	50
Clostridium	21-54	Thiobacillus	52-68		
Cytophaga	33-42	Treponema	25-53	Fungi Anaricus hisnorus	44
Deinococcus	62-70	D		Agaricus disportis Amanita muscaria	57
Escherichia	48-59	Protists Acanthamosha castellanii	56.58	Amannia muscara Asperoillus vioer	52
Halobacterium	66-68	Acetabularia mediterremea	37 53	Rlastocladialla amarconii	66
Hyphomicrobium	59-67	Amagha protein	51-55	Candida albicant	22 25
Methanobacterium	32-50	Chlanndomonas	60 68	Clavicens purpured	53-55
Micrococcus	64-75	Chlamita	43.70	Carrieus lagonus	52 53
Mycobacterium	62-70	Cuilotella amotica	43-79	Coprinus iugopus Fomer frazinaus	56
Mycoplasma	23-40	Cyciolella Cryplica Distantalium	41	romes fraxineus Munos munii	20
Myxococcus	68-71	Evolution and ilin	46 55	Mucor rouxu Nacessana	50 51
Neisseria	48-56	Euglena graciis	40-55	Neurospora crassa	52-54
Nitrobacter	59-62	Lycogaia	42	Penicinium notatium Pelicinium notatium	54
Oscillatoria	40-50	Niteenkie en stade	49	Polyporus patustris	30
Prochloron	41	Nuzsenia anguiaris	47	Knizopus nigricans	47
Proteus	38-41	Ochromonas danica	48	Saccharomyces cerevisiae	30-42
Pseudomonas	58-69	Parameetum spp.	29-39	saprotegnia parasifica	01

BIOGEOCHEMICAL CYCLES & MINERALISATION

Biomass substitute for oil

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Aerobic carbon use **Fig. 27.3** Oxidation of reduced products Carbon use **Influence** of H_2 H,O with mineral release oxygen on NH, NO,⁻ - NO_ Complex degradation organic matter Sº-SO²⁻ H2S of organic CO2 matter. Chemoheterotrophs Chemoautotrophs Anaerobic carbon use Organic fermentation products Carbon use Methane with mineral NH, production release H,S Complex CH, organic matter CO_2 Methanogenic Various Η, substrate producers chemoheterotrophs and methanogens

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sources of Carbon, Energy, and Electrons

Carbon Sources

Table 5.1

Autotrophs	CO ₂ sole or principal biosynthetic carbon
Heterotrophs	Reduced, preformed, organic molecules from other organisms
Energy Sources	
Phototrophs	Light

Chemotrophs Oxidation of organic or inorganic compounds

Electron SourcesLithotrophsReduced inorganic moleculesOrganotrophsOrganic molecules

Question 2: What is a -Photolithoautotroph? Give an example - Chemoorganoheterotroph? Give an example

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction	n or display.
--	---------------

Table 5.2 Major Nutritional Types of Microorganisms

Nutritional Type	Carbon Source	Energy Source	Electron Source	Representative Microorganisms
Photolithoautotrophy (photolithotrophic autotrophy)	CO ₂	Light	Inorganic e ⁻ donor	Purple and green sulfur bacteria, cyanobacteria
Photoorganoheterotrophy (photoorganotrophic heterotrophy)	Organic carbon, but CO ₂ may also be used	Light	Organic e ⁻ donor	Purple nonsulfur bacteria, green nonsulfur bacteria
Chemolithoautotrophy (chemolithotrophic autotrophy)	CO ₂	Inorganic chemicals	Inorganic e ⁻ donor	Sulfur-oxidizing bacteria, hydrogen-oxidizing bacteria, methanogens, nitrifying bacteria, iron-oxidizing bacteria
Chemolithoheterotrophy or mixotrophy (chemolithotrophic heterotrophy)	Organic carbon, but CO ₂ may also be used	Inorganic chemicals	Inorganic e ⁻ donor	Some sulfur-oxidizing bacteria (e.g., <i>Beggiatoa</i>)
Chemoorganoheterotrophy (chemoorganotrophic heterotrophy)	Organic carbon	Organic chemicals often same as C source	Organic e ⁻ donor, often same as C source	Most nonphotosynthetic microbes, including most pathogens, fungi, many protists, and many archaea

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 27.1 The Major Forms of Carbon, Nitrogen, Sulfur, and Iron Important in Biogeochemical Cycling

Curlo	Significant Gaseous	Poducod Forms	Ovidized Forme			
cycle	Component Present?	Reduced Forms	intermediate	Oxidation State Fo	orms	Oxidized Forms
С	Yes	Methane: CH_4 (-4)	Carbon monoxide CO			CO ₂ (+4)
			(+2)			
N	Yes	Ammonium: NH_4^+ , organic N (-3)	Nitrogen gas: N ₂ (0)	Nitrous oxide N ₂ O (+1)	Nitrite: NO_2^- (+3)	Nitrate: NO ₃ ⁻ (+5)
S	Yes	Hydrogen sulfide: H ₂ S, SH groups in organic matter (-2)	Elemental sulfur: S ⁰ (0)	Thiosulfate: $S_2O_3^{2-}$ (+2)	Sulfite: SO_3^{2-} (+4)	Sulfate: $SO_4^{2^-}$ (+6)
Fe	No	Ferrous iron: Fe ²⁺ (+2)				Ferric Iron: Fe ³⁺ (+3)

Major Forms and Valences

Note: The carbon, nitrogen, and sulfur cycles have significant gaseous components, and these are described as gaseous nutrient cycles. The iron cycle does not have a gaseous component, and this is described as a sedimentary nutrient cycle. Major reduced, intermediate oxidation state, and oxidized forms are noted, together with valences.

Carbon cycle

Nitrogen cycle

Nitrogen reactions more detailed

Nodules on the roots of Legume plant

Rhizobium species live in the nodules to fix N_2 . Dead rhizobia are N-source for plant to synthesize amino acids.

 $N_2 + 3H_2 \rightarrow 2 NH_3$

Nitrogenase, ATP, Mo, Fe $165 \cdot 10^6$ ton N/yr

Haber-Bosch process: $40 \cdot 10^6$ ton N/yr (400-450°C, 200 atm)

Biological nitrogen fixation

• Symbiotic

Rhizobium

clover, sojabeans, pea, luzern

Actinomyceter alder, buckthorn, myrtle, avens

• Non-symbiotic

Azotobacter, Clostridium Bluegreen algae 0.2 10 - 20

kg N/ha∙yr

20 - 500

40 - 500

Question 4: How come there is more N fixed via symbiotic relationships?

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Aerobic

Neutral pH = Gallionella spp.

Acidic = Leptospirillum, Thiobacillus ferrooxidans Acidic, thermophilic = Sulfolobus spp.

Magnetite: wonderful stuff!

Humans

That's why you never see this:

The Mercury cycle

The Economist

wanter statistics

SCT-841 2 814-3 1 1 2203

Don't blame China Marks The Democrats' economic ideas Marks Iran's last chance Marks

A SURVEY OF CORPORATE LEADERSHIP

The end of the Oil Age

Oil & Natural Gas Liquids 2003 Base Case Scenario 30 20 Gb/a Other 10 Russia Europe US 48 0 1940 1950 1960 1970 1930 1990 2000 1980 2010 2020 2030 2040 2050 US48 DEurope DRussia DOther DMEast Bleavy DDeepwater DPolar 2P-NGL

From the ASPO Newsletter; graph developed by Colin Campbell.

http://www.asponews.org/

Role of microorganisms in flow of organic carbon and CO₂

Q 4: Where can we tap organic carbon for replacing oil?

Biorefinery Concept

Biogeochemical cycle mindmap

