Metabolism Il

Basic Photosynthesis

Aim: understand gluconeogenesis, pentose phosphate
pathway, photosynthesis and amino acid synthesis



Anabolism

 From a carbon source and inorganic
molecules, microbes synthesize new
organelles and cells
— a lot of energy is required for biosynthesis

e Turnover
— continual degradation and resynthesis of cellular

constituents by nongrowing cells
 Metabolism is carefully regulated

— rate of turnover to be balanced by rate of
biosynthesis

— In response to organism’s environment



Level of organization

Cells

Organelles

Supramolecular systems

Maromolecules

Monomers or building blocks

Precursor metabolites

Carbon Inorganic
source molecules

Examples

Bacteria
Fungi

Nuclei
Mitochondria
Ribosomes
Flagella

Membranes
Enzyme complexes

Nucleic acids
Proteins
Polysaccharides
Lipids

Nucleotides
Amino acids
Sugars
Fatty acids

Pyruvate
Acetyl-CoA
Glucose 6-phosphate

CO,, NH,, H,0, PO %




 Macromolecules are synthesized from a
few simple structural units (monomers)

— saves genetic storage capacity,
biosynthetic raw material, and energy

« Many enzymes are used for both
catabolic and anabolic processes

— saves materials and energy



Principles governing biosynthesis

Anabolic X 3 Z
Catabolic and \T/
. e G
anabolic pathways Spkok I
are not identical, -
despite sharing !
\
many enzymes \
D
(3
— permits -
independent {
regulation 8
\
A




To synthesize molecules efficiently, anabolic
pathways must operate irreversibly in the
direction of biosynthesis

— done by coupling breakdown of ATP to certain
reactions in biosynthetic pathways

— drives the biosynthetic reaction to completion

In eucaryotes, anabolic and catabolic reactions
located In separate compartments

— allows pathways to operate simultaneously but
iIndependently



Catabolic and anabolic pathways use
different cofactors

— catabolism produces NADH
— NADPH used as electron donor for

anabolism
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Synthesis of saccharides

Gluconeogenesis

— to synthesize glucose and fructose from
noncarbohydrate precursors



Reactions of gluconeogenesis

Glucose is
synthesised from
glycerol, amino
acids and lactate

Reciprocal control of
glycolysis and
gluconeogenesis

The step between
fructose 6-phosphate
and fructosel,6-
bisphosphate is the
most important for the
control
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Three steps are different between glycolysis and gluconeogenesis

GLYCOLYSIS PEP + ADP — Pyruvate + ATP

GLUCONEOGENESIS Pyruvate + CO, + ATP + H,0 — > Oxaloacetate + ADP + P, + 2H*

Oxaloacetate + GTP —> PEP + GDP + CO,

GLYCOLYSIS Fructose 6-phosphate + ATP — Fructose 1,6-bisphosphate + ADP

GLUCONEOGENESIS  Fructose 1,6-bisphosphate + H,O — = Fructose 6-phosphate + P,

GLYCOLYSIS Glucose + ATP — > Glucose 6-phosphate + ADP

GLUCONEOGENESIS  Glucose 6-phosphate + H,O —> Glucose + P,




Some sugars are synthesized while attached to a nucleoside
diphosphate such as uridine diphosphate glucose (UDPG)
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Synthesis of polysaccharides

Also Iinvolves nucleoside diphosphate sugars
— e.g., starch and glycogen synthesis

ATP + glucose 1-P - ADP-glucose + PP,

(glucose), + ADP-glucose —» (glucose),,, + ADP
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Pentose phosphate pathway leads to NADPH and ribose 5-phosphate
i
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3 Ribose 5-phosphate — | 2 fructose 6-phosphate + glyceraldehyde 3-phosphate
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Summary of pentose phosphate pathway

Glucose-6-P + 12NADP* + 7H,0O
"

6CO, + 12NADPH + 12H* + P,






Chlorophyll-based phototrophy
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H,O 0,
Light reactions
+
" NADPH + H*
ADP + P, ATP

Dark reactions

(carbon-fixing reactions)

Glucose and CO,
other carbohydrates
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The Light Reaction in Oxygenic
Photosynthesis

Chlorophylls
— major light-absorbing pigments

Accessory pigments
— transfer light energy to chlorophylls
— e.g., carotenoids and phycobiliproteins



Bacteriochlorophyll a
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Accessory pigments absorb different wavelengths of light
than chlorophylis

B-Carotene
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Noncyclic
electron flow —
ATP + NADPH
made

Cyclic electron
flow — ATP
made (cyclic
photophos-
phorylation)
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OEC: oxygen evolving complex; Fd: ferredoxin; PQ: plastoquinone; Q: quinone; PC: plastocyanin



Electron flow - PMF — ATP
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Light and dark reactions of photosynthesis

H,O O,
SOLAR ENERGY 7
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Light reaction

ADP ATP

v NADP* NADPH

Dark reaction

Carbohydrates
CO, + H,0
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Synthesis of phosphorylated glucose in green plants

Isomerase

Glyceraldehyde-3-phosphate dihydroxyacetone phosphate (DHAP)

aldolase

DHAP + glyceraldehyde-3-phosphate fructose-1,6-bisphosphate

phosphatase
Fructose-1,6-bisphosphate + H,O < = fructose-6-phosphate + P;

isomerase

Fructose-6-phosphate glucose-6-phosphate

phosphoglucomutase

Glucose-6-phosphate < > glucose-1-phosphate




Synthesis of Amino Acids

Nitrogen addition to carbon skeleton is an
Important step

— potential sources of nitrogen: ammonia, nitrate,
or nitrogen

e most cells use ammonia or nitrate
—ammonia nitrogen easily incorporated into

organic material because it is more reduced
than other forms of inorganic nitrogen



Assimilatory Nitrate Reduction

e used by bacteria to
reduce nitrate to
ammonia and then
Incorporate it into
an organic form

* nitrate reduction to
nitrite catalyzed by
nitrate reductase

e reduction of nitrite
to ammonia
catalyzed by nitrite
reductase
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Nitrogen Fixation

reduction of
atmospheric
nitrogen to
ammonia

catalyzed by

nitrogenase

— found only in a few
species of
procaryotes

requires large ATP

expenditure
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Ammonia Incorporation into Carbon
Skeletons

e two mechanisms
— reductive amination

— glutamine synthetase-glutamate synthase
systems

e once Iincorporated, nitrogen can be
transferred to other carbon skeletons by
transaminases



Ammonia Incorporation by reductive
amination

a-Ketoglutarate Amino acid

NAD(P)H -
NAD(P)r<—"
H,0 Glutamate o-Keto acid



Ammonia Incorporation using Glutamine
Synthetase and Glutamate Synthase
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Summary

» Glucose is synthesized from glycerol, amino acids and
lactate in gluconeogenesis

 Pentose phosphate pathway produces NADPH and
ribose 5-phosphate

* Photosynthetic organisms absorb and direct solar energy
through electron transport chains to synthesize ATP and
NADPH. These high-energy products are used for
making carbohydrates from CO, and H,O

 Amino acids are synthesized through ammonia
Incorporation into carbon skeletons



