Metabolism II

Aim: understand the principles of TCA cycle, electron transport chain, oxidative phosphorylation, metabolism of fatty acid

Pyruvate dehydrogenase complex (PDC)

Tricarboxylic acid cycle (TCA cycle)

- What are the functions of TCA cycle?
- What are the reactions of TCA cycle?
- How does mitochondrion look like?

Summary

For each acetyl-CoA molecule oxidized, TCA cycle generates:

- -2 molecules of CO_2
- 3 molecules of NADH
- one FADH₂
- one GTP

Electron Transport Chain (ETC)

Series of electron carriers that operate together to transfer electrons from NADH and FADH₂ to a terminal electron acceptor

Electrons flow from carriers with more negative E_0 to carriers with more positive E_0

Approximate position in chain

As electrons are transferred, energy is released.

In eucaryotes, ETC is located in the inner mitochrondrial membrane

The redox loop mechanism for electron transport– linked H⁺ translocation

Procaryotic ETCs

Located in plasma membrane

Some resemble mitochondrial ETC, but many are different

- different electron carriers
- may be branched
- may be shorter
- may have lower P/O ratio

Electron Transport Chain of E. coli

stationary phase and low aeration

Branched pathway

log phase and high aeration

Oxidative Phosphorylation

Peter Mitchell

Process by which ATP is synthesized as the result of electron transport

Proton motive force (PMF) drives ATP synthesis

Diffusion of protons back across membrane (down gradient) drives formation of ATP

ATP synthase

 enzyme that uses PMF down gradient to catalyze ATP synthesis

ETC, PMF and Oxidative phosphorylation

Importance of PMF

Lipid catabolism

Triglycerides

- common energy sources
- hydrolyzed to glycerol and fatty acids by lipases
 - glycerol degraded via glycolytic pathway
 - fatty acids often oxidized via β-oxidation pathway

Lipase reactions

The enzyme lipase catalyses the hydrolysis of two of the fatty acids in the intestine.

Triacylglycerol is hydrolyzed to fatty acids and glycerol, which can be used in other cells

Degradation of fatty acid has three steps:

- 1. Activation
- 2. Transport into mitochondrion
- **3**. β -oxidation

Activation of the fatty acid consists of esterification to CoA at the expense of ATP

Transport of fatty acid into mitochondrion

The acyl group is transported into mitochondrion using carnitine. A translocase brings in acyl-carnitine and expels carnitine. Acyl-CoA is regenerated inside mitochondrion.

How much ATP can be formed by oxidation of fatty acid?

It is now possible to calculate the amount of ATP formed during complete oxidation of a fatty acid, e.g. palmitic acid

8 Acetyl-CoA in the tricarboxylic acid cycle: 8 x 3 = 24 NADH 8 x 1 = 8 FADH₂ 8 x 1 = 8 GTP

```
β-Oxidation yields: 7 NADH
7 FADH<sub>2</sub>
```

In total: 7 + 24 = 31 NADH corresponds to 31 x 2,5 = 77,5 ATP 7 + 8 = 15 FADH₂ corresponds to 15 x 1,5 = 22,5 ATP 8 GTP corresponds to 8 ATP

Summarised: 8 + 77,5 + 22,5 = 108 ATP

Two ATP are used during the initial activation of the fatty acid The total ATP-yield will be **106**

Fatty acid synthesis

- Fat is an efficient way to store energy
- It is usually surplus of carbohydrates that are converted to fat
- The reactions are in principle a reversed β -oxidation

Synthesis of fatty acid starts with the carboxylation of acetyl-CoA to malonyl-CoA. This is the committed step, malonyl CoA can only be used for synthesis of fatty acid.

Summary

- Pyruvate dehydrogenase complex bridges glycolysis and TCA cycle
- TCA cycle is the central hub of metabolism, 8 steps, produces 3 NADH + 1 FADH₂ + 1 GTP
- Electron transport chain proton motive force oxidative phosphorylation
- Lipid metabolism: β-oxidation of fatty acid
- Lipid metabolism: fatty acid synthesis, NADPH as cofactor